[ad_1]
Get college assignment help at uniessay writers Perform a regression analysis on the data using MS Excel. Observations are taken on net revenue from sales of Hughes, HNS, and satellite services to see if offering rebates is beneficial for the organization. Dealers don’t get rebates, but customers get a $100 mail in rebate and to keep customers when they call into Hughes to cancel the services, HNS will offer another $50 credit to the account. The regression model is Y = net revenue, X1 = shipping cost (dollars per unit), X2 = purchase pole mounts, X3 = dealers cost per equipment including dish, radio, and modem, X4 = Ads, X5 = installation. Regression: Y = X1 X2 X3 X4 X5… Predictor Coefficient Shipping Cost 60.00 Pole Mounts 65.00 Equipment 200.00 Ads 40.00 Rebate 100.00
9. For a continuous random variable x, the probability density function f(x) represents a. the probability at a given value of x b. the area under the curve at x c. Both the probability at a given value of x and the area under the curve at x are correct answers. d. the height of the function at x
4–83. A restaurant has three sources of revenue: eat-in orders, takeout orders, and the bar. The daily revenue from each source is normally distributed with mean and standard deviation shown in the table below. Mean Standard Deviation Eat in $5,780 $142 Takeout 641 78 Bar 712 72 a. Will the total revenue on a day be normally distributed? b. What are the mean and standard deviation of the total revenue on a particular day? c. What is the probability that the revenue will exceed $7,000 on a particular day?
among 28 professors of a certain department,18 drive foreign cars and 10 drive domestic cars.If 5 of these professors are selected at random what is the probability that atleast 3 of them drive foreign cars
“A geologist is using seismographs to test for oil. It is found that if oil is present, the test gives a positive result 75% of the time, and if oil is not present, the test gives a positive result 8% of the time. Oil is actually present in 2% of the cases tested. If the test shows positive, what is the probability that oil is present? ”
In determining automobile mileage ratings, it was found that the mpg in the city (x) for a certain model is normally distributed, with a mean of 24 mpg and a standard deviation of 1.0 mpg. find the following a) P (X,25) b) P(22 26) d.) P (X , 23) e.) The mileage rating that upper 5% of cars achieve
1. Does it appear that the mean weight of the Boston shingles is less than 3150 pounds? Test at = 0.05. 2. Does it appear that the mean weight of the Vermont shingles differs from 3700 pounds? Test at = 0.05. 3. Evaluate whether the assumption needed to conduct the tests in (1) and (2) has been seriously violated.
An important quality characteristic used by the manufacturer of Boston and Vermont asphalt shingles is the amount of moisture the shingles contain when they are packaged. Customers may feel that they have purchased a product lacking in quality if they find moisture and wet shingles inside the packaging. In some cases, excessive moisture can cause the granules attached to the shingle for texture and coloring purposes to fall off the shingle, resulting in appearance problems. To monitor the amount of moisture present, the company conducts moisture tests. A shingle is weighed and then dried. The shingle is them reweighed and based on the amount of moisture taken out of the product; the pounds of moisture per 100 square feet are calculated. The company would like to show that the average moisture content is less than 0.35 pounds per 100 square feet. The data is below; it includes 36 measurements (in pounds per 100 square feet) for the Boston shingles and 31 for the Vermont Shingles. Moisture Weight (pounds per 100 square feet) Boston Vermont 0.44 0.26 0.16 0.27 0.14 0.17 0.31 0.39 0.61 0.14 0.2 0.4 0.15 0.13 0.43 0.47 0.33 0.22 0.29 0.31 0.23 0.26 0.3 0.13 0.42 0.43 0.16 0.11 0.18 0.15 0.72 0.24 0.34 0.37 0.1 0.44 0.24 0.51 0.21 0.37 0.18 0.19 0.43 0.16 0.28 0.49 0.42 0.22 0.16 0.2 0.39 0.34 0.58 0.44 0.52 0.2 0.39 0.36 0.25 0.11 0.36 0.2 0.25 0.29 0.41 0.11 0.22 a/ for the boston shingles, is there evidence at the 0.05 level of significance that the population mean moisture content less than 0.35 pound per 100 square feet? b/ interpret the meaning of the p-value in (a) c/ for the Vermont shingles, is there evidence at the 0.05 level of significance that the population mean moisture content less than 0.35 pound per 100 square feet? d/ interpret the meaning of the p-value in (c) e/ what assumption about the population distribution is needed in order to conduct the t test in (a) and (c)? f/ use a histogram, boxplot, or a normal probability plot to evaluate the assumption made in (a) and (c) g/ do you think that the assumption needed in order to conduct the t test in (a) and (c) is valid? Explain.
The manufacturer of Boston and Vermont asphalt shingles knows that product weight is a major factor in the customer’s perception of quality. Moreover, the weight represents the amount of raw materials being used and is therefore very important to the company from a cost standpoint. The last stage of the assembly line packages the shingles before they are placed on wooden pallets. Once a pallet is full (a pallet for most brands holds 16 squares of shingles), it is weighed, and the measurement is recorded. The data file (Pallet) contains the weight (in pounds) from a sample of 368 pallets of Boston shingles and 330 pallets of Vermont shingles. Completely analyze the differences in the weights of the Boston and Vermont shingles, using α = 0.05. File (Pallet): Boston Vermont 3202 3792 3134 3652 3134 3652 3226 3726 3236 3728 3250 3676 3266 3704 3224 3656 3088 3666 3132 3648 3098 3708 3118 3682 3094 3680 3108 3670 3100 3728 3084 3708 3134 3678 3090 3660 3154 3718 3138 3636 3156 3644 3138 3684 3130 3688 3118 3724 3112 3682 3168 3660 3166 3672 3122 3692 3160 3672 3146 3700 3124 3694 3170 3706 3132 3650 3162 3692 3156 3746 3136 3728 3162 3726 3136 3714 3136 3730 3148 3768 3152 3740 3166 3720 3202 3626 3152 3692 3154 3730 3126 3726 3098 3734 3106 3712 3122 3684 3118 3718 3164 3742 3158 3736 3122 3730 3064 3666 3176 3664 3144 3688 3156 3694 3162 3684 3130 3688 3156 3688 3184 3702 3170 3676 3176 3656 3152 3632 3162 3652 3200 3658 3202 3684 3142 3670 3170 3678 3142 3674 3154 3674 3158 3634 3106 3684 3136 3708 3170 3670 3124 3684 3174 3746 3160 3688 3162 3702 3160 3666 3118 3670 3138 3700 3132 3658 3140 3664 3134 3682 3166 3672 3122 3730 3154 3712 3130 3720 3106 3700 3092 3722 3136 3728 3150 3692 3138 3726 3214 3686 3092 3708 3162 3732 3126 3724 3086 3730 3112 3698 3138 3686 3118 3680 3156 3732 3156 3718 3144 3700 3160 3718 3166 3666 3172 3714 3134 3706 3186 3718 3146 3712 3144 3688 3124 3736 3122 3706 3116 3720 3126 3714 3140 3740 3110 3724 3128 3744 3114 3728 3138 3728 3106 3680 3142 3652 3128 3634 3142 3640 3144 3728 3122 3724 3046 3704 3062 3668 3114 3684 3100 3652 3126 3756 3088 3702 3140 3840 3140 3696 3120 3702 3132 3732 3130 3736 3140 3752 3114 3696 3108 3732 3146 3702 3172 3640 3102 3672 3120 3756 3102 3710 3132 3736 3120 3726 3088 3800 3084 3784 3120 3804 3098 3740 3096 3730 3088 3778 3092 3718 3062 3810 3084 3786 3136 3766 3080 3736 3056 3738 3064 3726 3088 3764 3110 3678 3096 3728 3094 3716 3080 3856 3074 3816 3114 3792 3136 3808 3104 3802 3080 3746 3104 3800 3082 3780 3080 3756 3074 3768 3095 3768 3098 3728 3084 3724 3086 3736 3074 3760 3092 3708 3062 3688 3108 3650 3132 3636 3122 3628 3078 3656 3180 3630 3076 3730 3072 3662 3114 3746 3080 3726 3102 3702 3074 3678 3148 3676 3112 3738 3112 3598 3118 3718 3118 3738 3094 3766 3076 3750 3050 3740 3100 3784 3114 3760 3100 3804 3104 3798 3088 3804 3148 3714 3088 3720 3074 3760 3074 3650 3094 3686 3116 3750 3104 3690 3100 3686 3112 3718 3098 3732 3086 3702 3098 3706 3136 3660 3100 3686 3122 3650 3132 3678 3120 3708 3096 3706 3100 3646 3114 3698 3128 3644 3084 3642 3098 3746 3104 3714 3124 3674 3130 3626 3088 3592 3110 3642 3126 3646 3116 3734 3110 3654 3148 3672 3082 3684 3142 3692 3116 3676 3092 3666 3106 3640 3102 3704 3096 3650 3078 3616 3116 3706 3164 3770 3124 3740 3102 3726 3120 3706 3114 3756 3086 3724 3160 3718 3172 3706 3164 3654 3176 3730 3124 3734 3102 3704 3164 3734 3152 3662 3144 3640 3146 3618 3166 3644 3096 3586 3146 3566 3134 3674 3128 3842 3176 3764 3166 3650 3186 3652 3158 3740 3136 3814 3124 3754 3196 3714 3178 3634 3150 3626 3160 3658 3092 3672 3122 3662 3116 3662 3122 3666 3128 3732 3172 3710 3164 3648 3066 3714 3116 3748 3132 3732 3124 3658 3148 3680 3138 3762 3118 3636 3098 3700 3132 3754 3062 3756 3116 3652 3148 3700 3122 3664 3140 3672 3134 3658 3166 3750 3136 3662 3068 3762 3134 3742 3116 3788 3152 3668 3124 3658 3106 3726 3080 3704 3092 3654 3142 3684 3112 3774 3094 3770 3092 3788 3132 3646 3118 3660 3152 3696 3124 3704 3146 3722 3098 3682 3168 3636 3174 3630 3106 3630 3184 3728 3134 3692 3104 3688 3140 3694 3108 3694 3098 3744 3186 3734 3180 3122 3124 3148 3166 3080 3112 3144 3142 3112 3094 3066 3136 3128 3072 3090 3080 3092 3076 3098 3102 3076 3044 3112 3092 3094 3066 3098 3082 3146 3144 3098 3068 3098 3140 3130 3088 3082 a/ for the boston shingles, is there evidence that the population mean weight is different from 3150 pounds? b/ interpret the meaning of the p-value in (a) c/ for the vermont shingles, is there evidence that the population mean weight is different from 3700 pounds? d/ interpret the meaning of the p-value in (c) e/ in (a) though (d) do you have to worry about the normality assumption? explain
Boston Vermont 3202 3792 3134 3652 3134 3652 3226 3726 3236 3728 3250 3676 3266 3704 3224 3656 3088 3666 3132 3648 3098 3708 3118 3682 3094 3680 3108 3670 3100 3728 3084 3708 3134 3678 3090 3660 3154 3718 3138 3636 3156 3644 3138 3684 3130 3688 3118 3724 3112 3682 3168 3660 3166 3672 3122 3692 3160 3672 3146 3700 3124 3694 3170 3706 3132 3650 3162 3692 3156 3746 3136 3728 3162 3726 3136 3714 3136 3730 3148 3768 3152 3740 3166 3720 3202 3626 3152 3692 3154 3730 3126 3726 3098 3734 3106 3712 3122 3684 3118 3718 3164 3742 3158 3736 3122 3730 3064 3666 3176 3664 3144 3688 3156 3694 3162 3684 3130 3688 3156 3688 3184 3702 3170 3676 3176 3656 3152 3632 3162 3652 3200 3658 3202 3684 3142 3670 3170 3678 3142 3674 3154 3674 3158 3634 3106 3684 3136 3708 3170 3670 3124 3684 3174 3746 3160 3688 3162 3702 3160 3666 3118 3670 3138 3700 3132 3658 3140 3664 3134 3682 3166 3672 3122 3730 3154 3712 3130 3720 3106 3700 3092 3722 3136 3728 3150 3692 3138 3726 3214 3686 3092 3708 3162 3732 3126 3724 3086 3730 3112 3698 3138 3686 3118 3680 3156 3732 3156 3718 3144 3700 3160 3718 3166 3666 3172 3714 3134 3706 3186 3718 3146 3712 3144 3688 3124 3736 3122 3706 3116 3720 3126 3714 3140 3740 3110 3724 3128 3744 3114 3728 3138 3728 3106 3680 3142 3652 3128 3634 3142 3640 3144 3728 3122 3724 3046 3704 3062 3668 3114 3684 3100 3652 3126 3756 3088 3702 3140 3840 3140 3696 3120 3702 3132 3732 3130 3736 3140 3752 3114 3696 3108 3732 3146 3702 3172 3640 3102 3672 3120 3756 3102 3710 3132 3736 3120 3726 3088 3800 3084 3784 3120 3804 3098 3740 3096 3730 3088 3778 3092 3718 3062 3810 3084 3786 3136 3766 3080 3736 3056 3738 3064 3726 3088 3764 3110 3678 3096 3728 3094 3716 3080 3856 3074 3816 3114 3792 3136 3808 3104 3802 3080 3746 3104 3800 3082 3780 3080 3756 3074 3768 3095 3768 3098 3728 3084 3724 3086 3736 3074 3760 3092 3708 3062 3688 3108 3650 3132 3636 3122 3628 3078 3656 3180 3630 3076 3730 3072 3662 3114 3746 3080 3726 3102 3702 3074 3678 3148 3676 3112 3738 3112 3598 3118 3718 3118 3738 3094 3766 3076 3750 3050 3740 3100 3784 3114 3760 3100 3804 3104 3798 3088 3804 3148 3714 3088 3720 3074 3760 3074 3650 3094 3686 3116 3750 3104 3690 3100 3686 3112 3718 3098 3732 3086 3702 3098 3706 3136 3660 3100 3686 3122 3650 3132 3678 3120 3708 3096 3706 3100 3646 3114 3698 3128 3644 3084 3642 3098 3746 3104 3714 3124 3674 3130 3626 3088 3592 3110 3642 3126 3646 3116 3734 3110 3654 3148 3672 3082 3684 3142 3692 3116 3676 3092 3666 3106 3640 3102 3704 3096 3650 3078 3616 3116 3706 3164 3770 3124 3740 3102 3726 3120 3706 3114 3756 3086 3724 3160 3718 3172 3706 3164 3654 3176 3730 3124 3734 3102 3704 3164 3734 3152 3662 3144 3640 3146 3618 3166 3644 3096 3586 3146 3566 3134 3674 3128 3842 3176 3764 3166 3650 3186 3652 3158 3740 3136 3814 3124 3754 3196 3714 3178 3634 3150 3626 3160 3658 3092 3672 3122 3662 3116 3662 3122 3666 3128 3732 3172 3710 3164 3648 3066 3714 3116 3748 3132 3732 3124 3658 3148 3680 3138 3762 3118 3636 3098 3700 3132 3754 3062 3756 3116 3652 3148 3700 3122 3664 3140 3672 3134 3658 3166 3750 3136 3662 3068 3762 3134 3742 3116 3788 3152 3668 3124 3658 3106 3726 3080 3704 3092 3654 3142 3684 3112 3774 3094 3770 3092 3788 3132 3646 3118 3660 3152 3696 3124 3704 3146 3722 3098 3682 3168 3636 3174 3630 3106 3630 3184 3728 3134 3692 3104 3688 3140 3694 3108 3694 3098 3744 3186 3734 3180 3122 3124 3148 3166 3080 3112 3144 3142 3112 3094 3066 3136 3128 3072 3090 3080 3092 3076 3098 3102 3076 3044 3112 3092 3094 3066 3098 3082 3146 3144 3098 3068 3098 3140 3130 3088 3082 The manufacturer of Boston and Vermont asphalt shingles knows that product weight is a major factor in the customer’s perception of quality. Moreover, the weight represents the amount of raw materials being used and is therefore very important to the company from a cost standpoint. The last stage of the assembly line packages the shingles before they are placed on wooden pallets. Once a pallet is full (a pallet for most brands holds 16 squares of shingles), it is weighed, and the measurement is recorded. The data file (Pallet) contains the weight (in pounds) from a sample of 368 pallets of Boston shingles and 330 pallets of Vermont shingles. Completely analyze the differences in the weights of the Boston and Vermont shingles, using α = 0.05. File (Pallet): a/ for the boston shingles, is there evidence that the population mean weight is different from 3150 pounds? b/ interpret the meaning of the p-value in (a) c/ for the vermont shingles, is there evidence that the population mean weight is different from 3700 pounds? d/ interpret the meaning of the p-value in (c) e/ in (a) though (d) do you have to worry about the normality assumption? explain
Get college assignment help at uniessay writers class consists of 55% women, and 45% men 10% of the women smoke and 20% of the men smoke, what is the probability that a randomly selected smoker is female?
Unoccupied seats on flights cause airlines to lose revenue. It is known from past experience that the standard deviation is 3.2 unoccupied seats. Suppose a large airline wants to estimate the average number of unoccupied seats per flight. Records of 50 flights were randomly selected from the files, and the number of unoccupied seats was noted for each of the sampled flights. The sample mean was 8.4 seats. Suppose a 90% interval estimate for the average number of unoccupied seats was calculated? How large should the sample have been if a margin of error of 0.25 seats was desired?
A production unit is made up of 20 indentical components and each component has a probability of 0.25 being defective. what is the average number of defective components in a unit? further what is the probability in a unit(i)less then 3 components are defective? (ii)exactly 3 components are defective?
JET Copies Case Problem Read the “JET Copies” Case Problem on pages 678-679 of the text. Using simulation estimate the loss of revenue due to copier breakdown for one year, as follows: In Excel, use a suitable method for generating the number of days needed to repair the copier, when it is out of service, according to the discrete distribution shown.
According to a study the popular belief is 80% of adults enjoy drinking beer. If 3 adults were chosen at random from this study, what would the probability be that none of them enjoy drinking beer?
The grades for Economics students at a large university are found to be normally distributed with a mean of 76 and a standard deviation of 4. What proportion of the students are expected to have a grade between 84 and 88?
4–72. Total annual textbook sales in a certain discipline are normally distributed. Forty-five percent of the time, sales are above 671,000 copies, and 10% of the time, sales are above 712,000 copies. Find the mean and the variance of annual sales.
4–65. Weekly rates of return (on an annualized basis) for certain securities over a given period are believed to be normally distributed with mean 8.00% and variance 0.25. Give two values x1 and x2 such that you are 95% sure that annualized weekly returns will be between the two values.
4–64. An analyst believes that the price of an IBM stock is a normally distributed random variable with mean $105 and variance 24. The analyst would like to determine a value such that there is a 0.90 probability that the price of the stock will be greater than that value.11 Find the required value.
a/ for the boston shingles, is there evidence at the 0.05 level of significance that the population mean moisture content less than 0.35 pound per 100 square feet? b/ interpret the meaning of the p-value in (a) c/ for the Vermont shingles, is there evidence at the 0.05 level of significance that the population mean moisture content less than 0.35 pound per 100 square feet? d/ interpret the meaning of the p-value in (c) e/ what assumption about the population distribution is needed in order to conduct the t test in (a) and (c)? f/ use a histogram, boxplot, or a normal probability plot to evaluate the assumption made in (a) and (c) g/ do you think that the assumption needed in order to conduct the t test in (a) and (c) is valid? Explain.
A variable that cannot be measured in terms of how much or how many but instead is assigned values to represent categories is called
The post Perform a regression analysis on the data using MS Excel. Observations appeared first on uniessay writers.
[ad_2]
Source link